Characterization of Physiological Glucose Concentration Using Electrical Impedance Spectroscopy
نویسندگان
چکیده
Non-invasive glucose monitoring is crucial for effective diabetes mellitus treatment while a sound correlation of a non-invasive parameter to glucose level variation is quite challenging. This paper presents characterization of glucose concentrations using Electrical Impedance Spectroscopy (EIS) in three different solutions: 1) 0.9% NaCl, 2) Saline (NaCl 1.3gm, KCl 0.75gm, Na3C6H5O7 1.45gm, D-glucose 6.75gm in 500mL) and 3) Human Blood for every 25mg/dl change of glucose in total 150ml solution. A rectangular current pulse of 1.5s duration with 1mA peak is applied to the solutions and corresponding voltage is acquired across the solutions with Agilent InfiniiVision 7000B Series oscilloscope and Matlab R2011a Instrument Control Toolbox. The circuit proposed for current injection and voltage acquisition requires only two electrodes would reduce electrode polarization and skin irritation greatly which is a major concern in many previous works use generally four electrodes. Experimental results show sound correlation between EIS and blood glucose concentration. It is clearly found from the EIS that the DC impedance of solutions increases linearly with the increment in glucose concentrations.
منابع مشابه
Investigations on the structural, electrical properties and conduction mechanism of CuO nanoflakes
Copper oxide (CuO) nanostructures are of particular interest because of their interesting properties and promising applications in batteries, super capacitors, solar cells, gas sensors, bio sensors, nano fluids and catalysis. In Recent past, more efforts have been received to design materials with different properties which is dependent on morphology. In this work cupric oxide nano flakes were...
متن کاملInvestigations on the structural, electrical properties and conduction mechanism of CuO nanoflakes
Copper oxide (CuO) nanostructures are of particular interest because of their interesting properties and promising applications in batteries, super capacitors, solar cells, gas sensors, bio sensors, nano fluids and catalysis. In Recent past, more efforts have been received to design materials with different properties which is dependent on morphology. In this work cupric oxide nano flakes were...
متن کاملBioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review.
Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal...
متن کاملStructural, magnetic and electrical properties of pure and Dy-doped Fe2O3 nanostructures synthesized using chemical thermal decomposition technique
Pure (S1) and Dy3+-doped α-Fe2O3 (S2 and S3) nanoparticles were prepared by a combustion synthesis method at 700 ºC for 8 h using Fe(acac)3 (Tris(acetylacetonato)Iron(III)) as raw material. Characterizations of the prepared powders were carried out by powder X-ray diffraction (PXRD). Structural analysis was performed b...
متن کاملStructural, magnetic and electrical properties of pure and Dy-doped Fe2O3 nanostructures synthesized using chemical thermal decomposition technique
Pure (S1) and Dy3+-doped α-Fe2O3 (S2 and S3) nanoparticles were prepared by a combustion synthesis method at 700 ºC for 8 h using Fe(acac)3 (Tris(acetylacetonato)Iron(III)) as raw material. Characterizations of the prepared powders were carried out by powder X-ray diffraction (PXRD). Structural analysis was performed b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013